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Abstract
In this work we investigate the pair interaction of magnetic particles in a dilute polydisperse
sedimenting suspension. The suspension is composed of magnetic spherical forms of different
radii and densities immersed in a Newtonian fluid, settling due to the gravity. When in close
contact, the particles may exert on each other a magnetic force due to a permanent
magnetization. We restrict our attention to dispersions of micromagnetic composite with
negligible Brownian motion. The calculations of the relative particle trajectories are based on
direct computations of the hydrodynamic interactions among rigid spheres in the regime of low
particle Reynolds number. Depending on the relative importance of the interparticle forces and
gravity, the collisions may result in aggregation or simply in a breaking of the particle relative
trajectory time reversibility. After summing over all possible encounters, the transverse
self-diffusion and down-gradient diffusion coefficients that describe the cross-flow migration of
the particles are calculated. Our calculation shows first evidence and the significance of the
diffusion process arising from magnetic interactions in dilute non-Brownian suspensions.

1. Introduction

In a dilute dispersion, the probability of a third sphere
influencing the relative motion of two interacting particles is
small, and so we only need to consider binary interactions
of particles. If Brownian motion, inertia and interparticle
forces are negligible, two spherical particles collide in a
sedimenting dilute suspension in a reversible way, returning to
their initial streamlines. However, when the interparticle forces
are significant the particles are subjected to a lateral migration
and hence the collisions may result in aggregation or simply
in a breaking of the time reversibility of the particle relative
trajectory.

The migration of non-colloidal particles in a suspension
gives rise to a dispersive process which may be characterized as
self-dispersion owing to the random nature of collisions among
the suspended particles. The first experimental investigations
were carried out by Eckstein et al [1], who determined the
lateral shear-induced coefficient of self-dispersion of spherical
particles in a Couette device. A pioneering work [2] considered

the interactions between two rigid conducting spheres under
shear flow, evaluating the influence of a long-range force over
the lateral particle migration. In addition, Wang et al [3, 4]
presented expressions for the shear-induced self-diffusivity
and gradient diffusivity of a tracer fluid particle and of a
test sphere in the two directions perpendicular to the fluid
velocity, and Cunha and Hinch [5] presented results for
the transverse shear-induced gradient diffusivity for simple
shearing of a dilute suspension of rough spheres. Their theory
was applied to study self-dispersion of deformable drops, using
a boundary integral scheme [6]. For sedimenting suspensions,
the hydrodynamic diffusivity has been determined for a rough
heavy sphere and/or smooth sphere falling through a dilute
suspension of neutrally buoyant spheres [7, 8]. Self-diffusion
in more concentrated suspensions of non-Brownian particles in
simple shear flow has been studied using accelerated Stokesian
dynamics simulation [9, 10].

This paper presents a theoretical calculation of the relative
trajectories of two interacting magnetic particles in a dilute
sedimenting suspension. We should point out that in the
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current literature there is no well-established general theory
on this problem to which we can appeal. On the basis of
the previous results [5], we derived a general expression for
the transverse self-diffusion and gradient-diffusion coefficients
for a polydisperse dilute suspension. These calculations are
independent of the flow and the nature of the force between
the particles. Here we take into account the influence of
particle magnetization on breaking the relative trajectory time
reversibility coming from a trajectory analysis for different
conditions of the parameters which considers the relative
importance of interparticle forces and gravity.

2. Statement of the problem

Consider a bidisperse dilute suspension of rigid smooth
magnetic spheres of radius a1 and a2, densities ρ1 and ρ2 and
magnetizations M1 = M1d̂1 and M2 = M2d̂2 immersed in a
Newtonian fluid of density ρ and viscosity μ. Furthermore, the
particle Reynolds number is assumed to be vanishingly small,
so that all inertia effects can be ignored and the creeping flow
equations can be applied on the scale of the particle motion.
We suppose that the particles are not sufficiently massive
so that their inertia need not be included when determining
their trajectories. We shall restrict our attention in this first
calculation to dilute dispersions in which the induced torque
on the test particle due to the permanent magnetization of the
second particle is a weak effect. The suspension undergoes a
uniform gravitational force per unit mass g = −gê2.

The pairwise collisions of the particles in non-Brownian
suspensions are gravity induced due to the different particle
radii and densities. The polydispersity of the pair of particles
is characterized by the radius ratio λ ≡ (a2/a1) and by the
reduced densities ratio γ ≡ (ρ2 − ρ)/(ρ1 − ρ). The centres
of the particles 1 and 2 are located at X and Y , respectively,
where r ≡ Y − X = r r̂ denotes the vector joining the
centres of the two particles, and the dimensionless distance
between the particles is denoted by s ≡ 2 r/(a1 + a2). The
settling velocity of an isolated particle of the species i is given
by U

(0)
i = 2 a2

i (ρi − ρ) g/9μ. The relative velocity of the
isolated particles is defined as being U

(0)

12 ≡ U
(0)

2 − U
(0)

1 , and
its absolute value U (0)

12 will be used in the present context as a
velocity scale of the motion.

3. Mobility formulation

As the creeping flow equations are linear and quasi-steady,
the velocity of each sphere depends only on the instantaneous
relative location of the two spheres, and is linear with respect
to the applied forces, F1 and F2. Thus, the translational
velocities U1 and U2 are determined by the following mobility
relations [11]:

U1 = b11F1+b12F2 and U2 = b21F1+b22F2 (1)

with bαβ = [3πμ(aα + aβ)]−1[Aαβ(rr/r 2) + Bαβ(I −
(rr/r 2))], where the square matrix is the global mobility, that
contains the second-order tensors bαβ(α, β = 1, 2) and I

denotes the unit second-order tensor. The two-sphere mobility

functions Aαβ(s, λ) and Bαβ(s, λ) depend only on λ and the
dimensionless distance s. Numerical values of the mobility
functions for arbitrary λ and s have been made available
by [12, 11] for the near-field and far-field configurations.
Acting on the particles, the Fi force includes the buoyancy
force and the magnetic interaction force, being expressed as
Fi = 4

3πa3
i (ρi − ρ)g + (2i − 3)∇ϕM for i = 1, 2, where ϕM

is the magnetic potential.

3.1. Magnetic pairwise interaction

For the magnetic interaction between two dipoles, the far-field
expression given in [13] applies: ϕM = [μ0(M1V1)(M2V2)]/
(4πr 3)[d̂1 · d̂2 − 3(d̂1 · r̂)(d̂2 · r̂)], where r̂ ≡ r/r is the
unit vector along the line of centres of the particles, V1 and V2

are the particle volumes and μ0 is the magnetic permeability
of the free space. For the non-dimensioning of this equation,
we chose as a typical scale μ0 M2

1 V1, being a measure of the
strength of the magnetic potential. Then, it can be rewritten in
a dimensionless form as ϕd

M = (M12/(3 s3))(2λ/(1 + λ))3[d̂1 ·
d̂2 − 3(d̂1 · ŝ)(d̂2 · ŝ)], where M12 = M2/M1 is the
magnetization intensity ratio and ϕd

M = ϕM/μ0 M2
1 V1.

3.2. Particle relative trajectory

The equation of the motion of the two spheres consists in the
balance between the hydrodynamic force on each particle and
the applied force Fi . Thus, the vector s time evolution, in a
dimensionless form, is governed by the differential equation
ds/dt = U12 ≡ U2 − U1. And, by substituting the expression
for Fi into (1), one obtains an expression for the relative
velocity U12 given by

U12 = e2 ·
[ss

s2
L +

(
I − ss

s2

)
M

]

− QM∇ϕd
M ·

[ss

s2
G +

(
I − ss

s2

)
H

]
(2)

where L, M, G and H are scalar functions of s [12, 11]
given by L(s) = γλ2 A22−A11

γλ2−1 + 2(1−γλ3)A12

(γ λ2−1)(1+λ)
, M(s) =

γλ2 B22−B11

γλ2−1 + 2(1−γλ3)B12

(γ λ2−1)(1+λ)
, G(s) = λA11+A22

(1+λ)
− 4λA12

(1+λ)2 and

H(s) = λB11+B22
(1+λ)

− 4λB12
(1+λ)2 . The functions L(s), M(s), G(s)

and H(s) are unchanged when λ and γ are substituted by
their reciprocals λ−1 and γ −1. The two terms on the right-
hand side of (2) represent the contributions of gravity and
interparticle forces to the particle relative motion, respectively.
Their relative importance may be measured by the parameter
QM = μ0M2

1 V1/(6πμa1a2U (0)
12 ) that can be seen as the ratio

between the work done by the magnetic and the viscous forces.

4. Numerical results

The governing equations for the relative trajectories of two
interacting particles were integrated by using a fourth-order
Runge–Kutta scheme. The asymptotic forms of the mobility
functions for widely separated spheres given were used for
s > 2.3 [12]. Otherwise, the near-field mobilities also given by
Jeffrey and Onishi [12] were implemented. In order to prevent
particle overlap, we use an adaptive time step which takes into
account the balance between the force acting on the particles

2
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0

Figure 1. Relative trajectories of pairwise interacting magnetic
particles. Parameter values: λ = 0.5, γ = 1.0, x−∞

1 = 1.5,
M12 = 1.0, d̂1 = d̂2 = (1, 0, 0), αm = 1.0 and QE = 0.

when in close contact: the lubrication force and the magnetic
force. Then, using the typical scales for the lubrication and
the magnetic forces we obtain the following time step to use in
the present simulations: δt = 1

10 min{10−2, ξ 2Q−1
M }. Applying

this scheme, the errors in the numerical integration were less
than 10−3.

At this point we present some typical relative particle
trajectories. The gravity directions are indicated in all figures
by the g vector. The circle plotted with the relative trajectories
represents the collision surface, whose radius is the sum of the
particle radii, given by a1 + a2. Figure 1 presents results for
the influence of the magnetic interaction potential QM on the
hydrodynamic diffusion process.

Figure 1 shows that for λ = 0.5, γ = 1.0, x−∞
1 =

1.5, M12 = 1.0, d̂1 = d̂2 = (1, 0, 0), the value QM =
10, the trajectory even though not aggregative is strongly
irreversible, as can be seen by there being no null net transverse
displacement, resulting a hydrodynamic diffusion process in
the flow suspension of magnetic particles even for dilute
regimes in which pairwise interactions dominate. In contrast,
for higher values of QM (e.g. QM = 102) the relative trajectory
is aggregative and for small values of QM (e.g. QM = 1) the
relative trajectories are reversible.

4.1. Reversibility and irreversibility diagrams (RID)

Many phenomena can be responsible by the breaking of the
relative trajectory time reversibility in Stokes flows. Among
these, we note: the roughness of particles [5, 8], the particle
deformation [6], the particle inertia and the presence of
interparticle forces [2, 4, 14]. In this section, we are
interested in the net displacement across streamlines caused

by a collision. In order to represent the net streamline
displacements, we plot in figure 2 the final absolute coordinates
in a dimensionless form (Y +∞

1 , Y +∞
3 ) for the incident sphere

with initial positions (Y −∞
1 , Y −∞

3 ) on a regular grid, [0, 3.5] ×
[0, 3.5].

The dotted lines in figures 2(a) and (b) show the limit
between reversible and irreversible trajectories. This interface
is defined by limit positions at which the difference between
the transverse distances is given by �Yk = |Y +∞

k − Y −∞
k | �

10−3, with k = 1, 3. This choice is based on a numerical
error obtained in the simulations O(10−3). The depleted
regions of the initial grid in figures 2(a) and (b) represent
those trajectories that result in aggregation. The heterogeneous
point distributions in figure 2(b) show a RID where the
aggregation region and the diffusive trajectories are more
evident, corresponding to the breaking of time reversibility
trajectories. Furthermore, figure 2(c) represents an extreme
configuration of mixing of trajectories, where the diffusive
trajectories dominate. Higher values of QM leads to a
higher density of opened irreversible trajectories and a greater
probability of doublet formation.

4.2. Dispersion coefficients

Although the Stokes equations are linear, the equations of
particle motion are nonlinear so a tracer particle may exhibit
a random walk in a suspension under the action of purely
deterministic forces [10]. The interest of the present work is
the case in which the hydrodynamic and magnetic interactions
between the particles in a suspension are significant. This
dispersive process can be characterized as a non-Brownian
diffusivity which depends on the particle volume fraction φ and
consequently on the instantaneous configuration, in contrast
with ordinary Brownian suspensions.

Now, in order to obtain the hydrodynamic collective
diffusivity Dc(φ), we consider a dispersion which has a
small gradient in the concentration of m species across the
streamlines, n j (r) = n0

j + xk(∂n j/∂xk), with j = 1, . . . , m
and k = 1, 3. Following this, it is necessary to calculate the
rate at which particles cross a unit area of a plane perpendicular
to the concentration gradient, xk = 0 for k = 1 or 3, due
to net displacements across the streamlines. Then, we use the
same procedure as was described by Cunha and Hinch [5] and,

Figure 2. RID for λ = 0.5, γ = 1.0, d̂1 = d̂2 = (1, 1, 0) and M12 = 1.0. (a) QM = 1, (b) QM = 10 and (c) QM = 102.
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making the necessary modifications, we obtain a flux of the i
species equal to

J k
i =

m∑
j=1

∫ ∞

−∞

∫ ∞

−∞

[
n0

i n0
j (�Yk)i j + 1

2

(
n0

j

∂ni

∂xk
+ n0

i

∂n j

∂xk

)

× (�Yk)
2
i j + n0

i

∂ni

∂xk
x−∞

k (�Yk)i j

]
Ui j dx−∞

1 dx−∞
3 (3)

with i, j = 1, . . . , m and k = 1 or 3. The first term in the
square bracket vanishes, as, averaging over the collisions, there
is no net displacement. Hence the flux is proportional to the
concentration gradient, with the coefficient of proportionality
being a diffusivity. After some algebraic manipulation,
equation (3) can be written as

J k
i =

m∑
j=1

{∫ ∞

−∞

∫ ∞

−∞
n0

i

[
1

2
(�Yk)

2
i j + x−∞

k (�Yk)i j

]

× Ui j dS−∞ +
(

n′
i

n′
j

) ∫ ∞

−∞

∫ ∞

−∞
n0

j

[
1

2
(�Yk)

2
i j

]

× Ui j dS−∞
}

∂n j

∂xk
=

m∑
j=1

Dk
i j |c

∂n j

∂xk
, (4)

where dS−∞ = dx−∞
1 dx−∞

3 and n′
i = ∂ni/∂xk . In particular,

note that the first term of equation (4) represents half the rate of
change in time of the mean square displacement of the particle
random walk, i.e. a self-diffusion contribution

Dk
i j |s =

∫ ∞

−∞

∫ ∞

−∞
n0

i

[
1
2 (�Yk)

2
i j

]
Ui j dS−∞ (5)

and the term

Fk
i j =

∫ ∞

−∞

∫ ∞

−∞
n0

i

[
x−∞

k (�Yk)i j
]

Ui j dS−∞ (6)

is that related to the net flux produced by the concentration
gradient. In a more compact form, the expression obtained
in (4) can be expressed as Dk

i j |c = Dk
i j |s + Fk

i j +
δi j

∑m
p=1(n

0
p/n0

i )Dk
ip|s. One of the two Dk

i j |s is the standard
contribution of the random walk to a flux down a concentration
gradient. The second one is due to the slightly higher
concentration of particles colliding on one side of a test sphere
systematically nudging it across the streamlines towards the
lower concentration, and exists only if the two interacting
particles are of the same type.

4.3. Diffusion coefficients for bidisperse dilute suspensions

Now we apply the generalized diffusion theory developed
in the previous section for a bidisperse dilute suspension.
From equation (4), one can write the expressions for the
flux of particles 1 and 2 in the x direction (transverse to
gravity) as being J1 = D11|c(∂n1/∂x) + D12|c(∂n2/∂x) and
J2 = D21|c(∂n1/∂x) + D22|c(∂n2/∂x), where the collective
dispersion coefficients Di j |c are given by D11|c = 2D11|s +
F11+(n0

2/n0
1)D12|s; D12|c = D12|s+F12; D21|c = D21|s+F21;

D22|c = 2D22|s+ F22+(n0
1/n0

2)D21|s. These expressions make
explicit the additional self-diffusion terms that are related to
non-uniform concentration of particles colliding on one side

Figure 3. Dimensionless down-gradient dispersion coefficient of the
incident particle 1 in a suspension of magnetic particles for γ = 1.0,
M12 = 0.8, and d̂1 = d̂2 = (1, 1, 1).

of a test particle. In particular, for sedimenting suspensions,
the terms D11|s, F11, D22|s and F22 are all null. Then, it is
necessary to evaluate the diffusivities D12|c and D21|c.

Now, making dimensionless the lengths of the integrand
of (5) and (6) using the effective radius ā = (a1 + a2)/2 one
may write the diffusion coefficients in a dimensionless form.
For instance, we have the following dimensionless expressions
for D12|s and F12:

D12|s = D12|s
U (0)

12 āφ0
1

=
∫ ∞

−∞

∫ ∞

−∞

[
3

8π

(
1 + λ

2

)3

(�Y )2
12

]
dS−∞ (7)

and

F12 = F12

U (0)
12 āφ0

1

=
∫ ∞

−∞

∫ ∞

−∞

[
3

4π

(
1 + λ

2

)3

x−∞
k (�Yk)i j

]
dS−∞. (8)

Figure 3 presents results for the down-gradient diffusivity
coefficient D12|c of the incident particle, for different values
of the polydispersity parameter λ. For γ = 1.0, M12 = 0.8,
and d̂1 = d̂2 = (1, 1, 1), it is seen that higher values of λ lead
to a higher diffusion coefficient. This is a direct consequence
of the increasing effect of gravity compared to the interparticle
magnetic force for lower values of λ. Then, as the dispersion
is produced due to an intrinsic source of irreversibility of the
suspension (in the present case, the magnetic interaction), for
λ = 0.5 the down-gradient diffusivity is about 20 times greater
than the one obtained for λ = 0.25. In the same plot it is
shown that for the case in which λ � 1 (e.g. λ = 0.25) and
QM � 1 the coefficient D12|c tends to 4.7 × 10−5. Smaller
values of λ require a minimum value of Qc

M (critical value) in
order to produce a substantial change on D12|c. The inset in
figure 3 shows the dependence of Qc

M on λ. The results reveal
a power-law behaviour with Qc

M
∼= (2 × 10−6)λ−17/5.

Besides, for QM � 1, it is seen clearly that the diffusion
coefficient D12|c has a power-law behaviour. We also plot

4
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this asymptotic limit for λ = 0.25, obtaining the expression
D12|c ∼= (9/100)Q3/2

M . The power of QM in the expression
of D12|c is independent of the polydispersity parameter, so
for all λ we propose a more generalized formula for this
asymptotic limit as D12|c ∼= c0(λ)Q3/2

M , the same for the
conditions λ = 0.5 and 0.125. In addition, figure 3 presents the
magnitude of the dispersion effect produced by the two-particle
magnetic interaction in comparison with the calculations based
on breaking the symmetry of the particle trajectory examined
by Davis [8]. We can see that the maximum value of the
lateral diffusivity coefficient obtained for rough particles [8]
is about 70 times lower than that obtained for the case λ = 0.5
and QM = 102, which indicates a significant influence of
the magnetic dipole–dipole interaction on the hydrodynamic
diffusive process investigated.

5. Conclusions

The dispersive process examined here was not produced
by Brownian motion since the particle diffusivity depends
on the particle volume fraction of the suspension. A key
dimensionless parameter has been identified, denoted by QM,
which provides a measure of the relative importance of work
done by the magnetic force and that done by the viscous
force. The down-gradient diffusivity of a magnetic test sphere
having volume fraction φ in a bidisperse suspension has
been computed, giving D = c(λ)U 0

12āφQ3/2
M . Our results

have indicated a significant influence of the magnetic dipole–
dipole pairwise interactions on the hydrodynamic diffusion of
micromagnetic composites during sedimentation.
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